0.0
NA
CVE-2025-40007
netfs: fix reference leak
Description

In the Linux kernel, the following vulnerability has been resolved: netfs: fix reference leak Commit 20d72b00ca81 ("netfs: Fix the request's work item to not require a ref") modified netfs_alloc_request() to initialize the reference counter to 2 instead of 1. The rationale was that the requet's "work" would release the second reference after completion (via netfs_{read,write}_collection_worker()). That works most of the time if all goes well. However, it leaks this additional reference if the request is released before the I/O operation has been submitted: the error code path only decrements the reference counter once and the work item will never be queued because there will never be a completion. This has caused outages of our whole server cluster today because tasks were blocked in netfs_wait_for_outstanding_io(), leading to deadlocks in Ceph (another bug that I will address soon in another patch). This was caused by a netfs_pgpriv2_begin_copy_to_cache() call which failed in fscache_begin_write_operation(). The leaked netfs_io_request was never completed, leaving `netfs_inode.io_count` with a positive value forever. All of this is super-fragile code. Finding out which code paths will lead to an eventual completion and which do not is hard to see: - Some functions like netfs_create_write_req() allocate a request, but will never submit any I/O. - netfs_unbuffered_read_iter_locked() calls netfs_unbuffered_read() and then netfs_put_request(); however, netfs_unbuffered_read() can also fail early before submitting the I/O request, therefore another netfs_put_request() call must be added there. A rule of thumb is that functions that return a `netfs_io_request` do not submit I/O, and all of their callers must be checked. For my taste, the whole netfs code needs an overhaul to make reference counting easier to understand and less fragile & obscure. But to fix this bug here and now and produce a patch that is adequate for a stable backport, I tried a minimal approach that quickly frees the request object upon early failure. I decided against adding a second netfs_put_request() each time because that would cause code duplication which obscures the code further. Instead, I added the function netfs_put_failed_request() which frees such a failed request synchronously under the assumption that the reference count is exactly 2 (as initially set by netfs_alloc_request() and never touched), verified by a WARN_ON_ONCE(). It then deinitializes the request object (without going through the "cleanup_work" indirection) and frees the allocation (with RCU protection to protect against concurrent access by netfs_requests_seq_start()). All code paths that fail early have been changed to call netfs_put_failed_request() instead of netfs_put_request(). Additionally, I have added a netfs_put_request() call to netfs_unbuffered_read() as explained above because the netfs_put_failed_request() approach does not work there.

INFO

Published Date :

Oct. 20, 2025, 4:15 p.m.

Last Modified :

Oct. 20, 2025, 4:15 p.m.

Remotely Exploit :

No

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products

The following products are affected by CVE-2025-40007 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

No affected product recoded yet

Solution
Address reference leaks in netfs by applying the latest kernel patches.
  • Update the Linux kernel to the latest stable version.
  • Apply vendor-provided security patches for netfs.
  • Review netfs code for reference counting issues.
  • Ensure I/O operations are properly submitted and completed.
References to Advisories, Solutions, and Tools

Here, you will find a curated list of external links that provide in-depth information, practical solutions, and valuable tools related to CVE-2025-40007.

URL Resource
https://git.kernel.org/stable/c/4d428dca252c858bfac691c31fa95d26cd008706
https://git.kernel.org/stable/c/8df142e93098b4531fadb5dfcf93087649f570b3
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2025-40007 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2025-40007 weaknesses.

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2025-40007 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2025-40007 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Oct. 20, 2025

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: netfs: fix reference leak Commit 20d72b00ca81 ("netfs: Fix the request's work item to not require a ref") modified netfs_alloc_request() to initialize the reference counter to 2 instead of 1. The rationale was that the requet's "work" would release the second reference after completion (via netfs_{read,write}_collection_worker()). That works most of the time if all goes well. However, it leaks this additional reference if the request is released before the I/O operation has been submitted: the error code path only decrements the reference counter once and the work item will never be queued because there will never be a completion. This has caused outages of our whole server cluster today because tasks were blocked in netfs_wait_for_outstanding_io(), leading to deadlocks in Ceph (another bug that I will address soon in another patch). This was caused by a netfs_pgpriv2_begin_copy_to_cache() call which failed in fscache_begin_write_operation(). The leaked netfs_io_request was never completed, leaving `netfs_inode.io_count` with a positive value forever. All of this is super-fragile code. Finding out which code paths will lead to an eventual completion and which do not is hard to see: - Some functions like netfs_create_write_req() allocate a request, but will never submit any I/O. - netfs_unbuffered_read_iter_locked() calls netfs_unbuffered_read() and then netfs_put_request(); however, netfs_unbuffered_read() can also fail early before submitting the I/O request, therefore another netfs_put_request() call must be added there. A rule of thumb is that functions that return a `netfs_io_request` do not submit I/O, and all of their callers must be checked. For my taste, the whole netfs code needs an overhaul to make reference counting easier to understand and less fragile & obscure. But to fix this bug here and now and produce a patch that is adequate for a stable backport, I tried a minimal approach that quickly frees the request object upon early failure. I decided against adding a second netfs_put_request() each time because that would cause code duplication which obscures the code further. Instead, I added the function netfs_put_failed_request() which frees such a failed request synchronously under the assumption that the reference count is exactly 2 (as initially set by netfs_alloc_request() and never touched), verified by a WARN_ON_ONCE(). It then deinitializes the request object (without going through the "cleanup_work" indirection) and frees the allocation (with RCU protection to protect against concurrent access by netfs_requests_seq_start()). All code paths that fail early have been changed to call netfs_put_failed_request() instead of netfs_put_request(). Additionally, I have added a netfs_put_request() call to netfs_unbuffered_read() as explained above because the netfs_put_failed_request() approach does not work there.
    Added Reference https://git.kernel.org/stable/c/4d428dca252c858bfac691c31fa95d26cd008706
    Added Reference https://git.kernel.org/stable/c/8df142e93098b4531fadb5dfcf93087649f570b3
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
Vulnerability Scoring Details
No CVSS metrics available for this vulnerability.